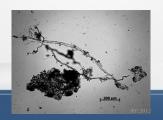


Forum InCA Environnement

23.01.2020

Mesure de turbidité optique résolue en temps

Philippe Schmitt - MécaFlu



Contexte et problématique

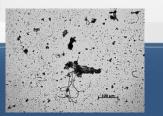
Moyen de surveillance usuel

Fonction de l'opacité du flux et de sa couleur

Evaluation de la charge de

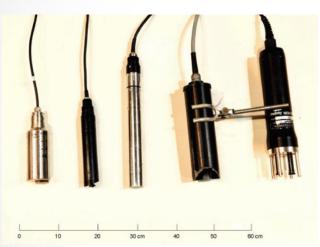
Gestion optimale des flux

Matières En Suspension


(MES) en temps réel

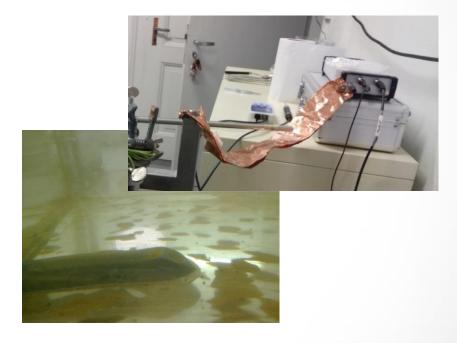
Grande variété d'applications possibles

Technologie plus


récente

Dépend de la nature et de la concentration des particules présentes dans le flux

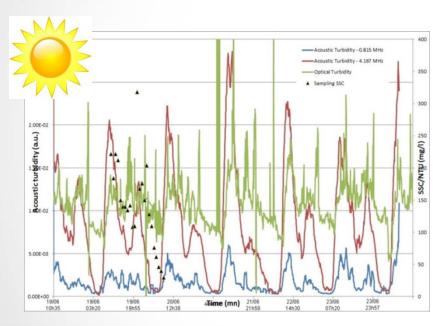
ICU3E

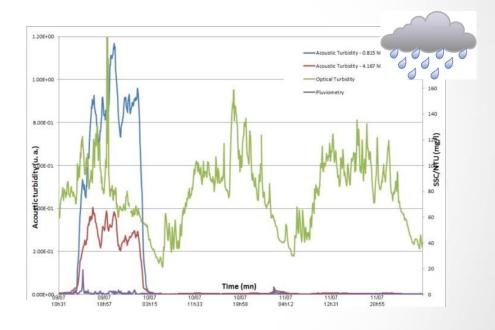

Contexte et problématique

Hach-Lange, Endress+Hauser, WTW, Neotek Ponsel, Partech-Mobrey

Turbidimètres optiques

- Mesure de la diminution de la transparence du milieu, dû aux particules
- Mesure néphelométrique (lumière diffusée à 90°) par diode électroluminescente (LED)




Turbidimètre acoustique

- Système ultrasonore pulsé multifréquences
- Profils de vitesse et d'amplitude par mesure Doppler

Contexte et problématique

Temps sec

- L'ensemble des turbidités reflète le cycle journalier
- Cohérence avec les prélèvements
- Turbidité optique moyenne 150 NTU

Episode pluvieux

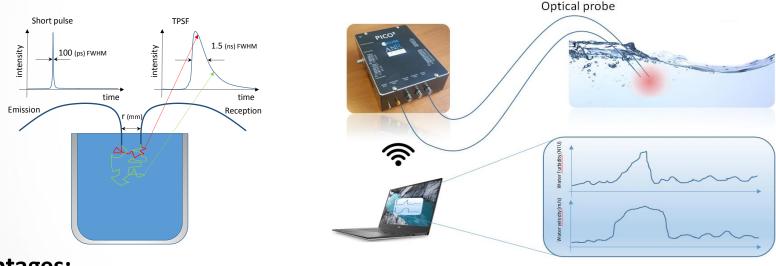
- Cycle journalier visible sur l'optique de valeur moyenne 70 NTU
- Augmentation d'un facteur 100 des turbidités acoustiques

ICU3E

Contexte et problématique

- Mise en doute de la fiabilité des turbidimètres optiques par des publications récentes
- En situation exceptionnelle (pluie en assainissement, crue en rivière) les données de turbidité optique sont fausses

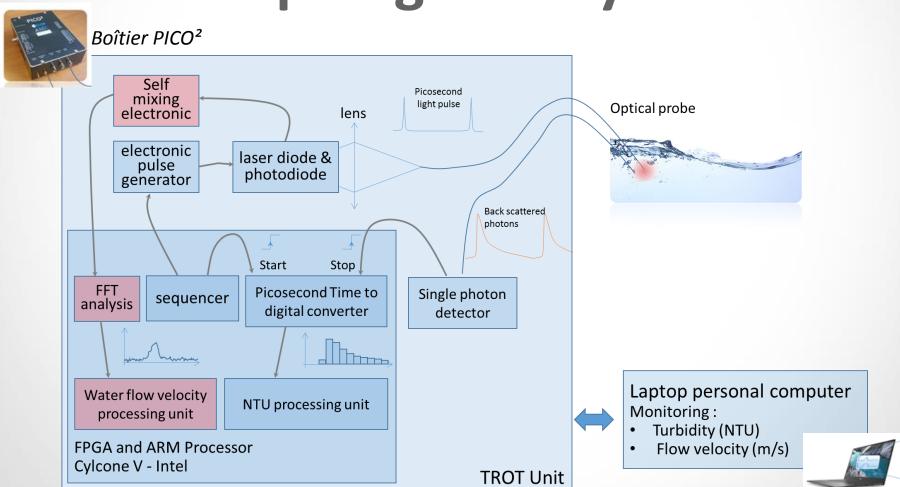
sous-estimation importante de la concentration en MES


Projet API sur l'analyse des signaux optiques et acoustiques provenant de MES et la proposition d'un nouveau dispositif de mesure en continu => Turbidité Optique Résolue en Temps (TROT)

- Rymszewicz, A., O'Sullivan, J. J., Bruen, M., Turner, J. N., Lawler, D. M., Conroy, E., & Kelly-Quinn, M. (2017).. Journal of Environmental Management, 199, 99.
- ➤ Pallarès A. Burckbuchler M., Fischer S., Schmitt P. (2017), Proceedings of the 14th International Conference on Urban Drainage, Prague, 10-15 September 2017.
- Voichick N., Topping D.J ,GriffithsR.E., (2017), Hydrol. Earth Syst. Sci. Discuss.
 - https://doi.org/10.5194/hess-2017-528

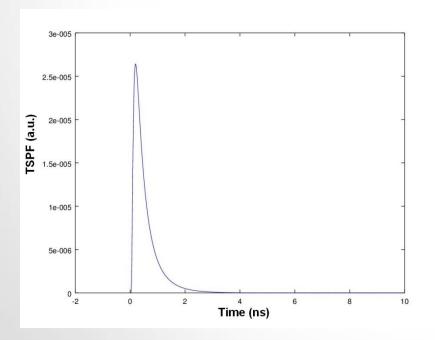
or suspended-sediment samples) are necessary to correct these low false turbidity measurements and accurately measure

Time Resolved Optical Turbidity (TROT)



Avantages:

- Mesure de la turbidité en temps réel
- Grande dynamique de mesure
- Méthode de mesure robuste aux perturbations extérieures
- Système compact et robuste, relativement peu coûteux
- Fonctionne avec des composants standard: bas coût


Topologie du système

ICU3E

Théorie: Turbidité optique résolue en temps

- Approximation d'un milieu infini
- Dans ce cas, solution analytique simple, l'équation de Green:

$$\Phi(\vec{r},t) = (4\pi\kappa t)^{-3/2} \exp\left(-\mu_a ct - \frac{r^2}{4\kappa t}\right)$$

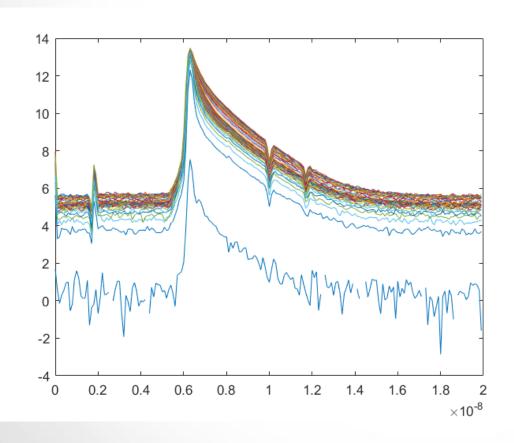
$$\kappa = \frac{c}{3(\mu_a + \mu_s')}$$

 μ_a : coefficient d'absorption μ_s ': coefficient de diffusion

Arridge, S. R., Cope, M., Delpy, D. T., The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis (1992) *Phys. Med. Biol.* 37 1531

Mesures en laboratoire

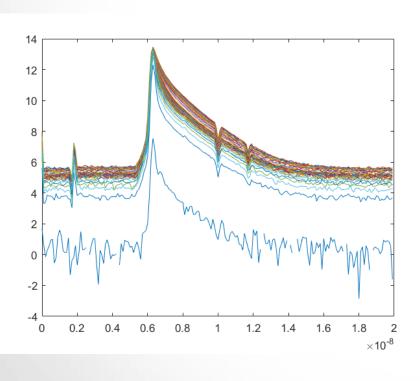
Dispositif de mesure:


- Diode laser et S.P.A.D. (Single Photon Avalanche Detector), reliés à la Pico²
- Milieu supposé infini et homogène
- Mesures en rétrodiffusion ou à 120°

Mesure de turbidité:

- Utilisation d'eau purifiée
- Ajout de formazine préparée à différentes concentrations
- Mesure faite par absorption de lumière (unité FAU) ou par diffusion de lumière à un angle d'environ 90° (unité NTU)

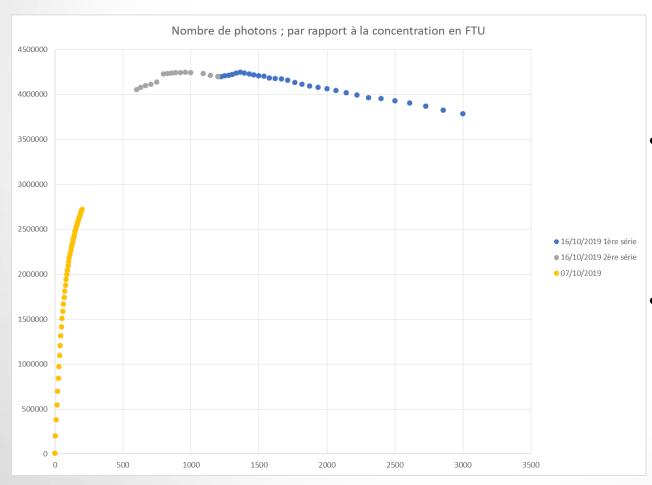
Analyse des mesures



Mesures effectuées:

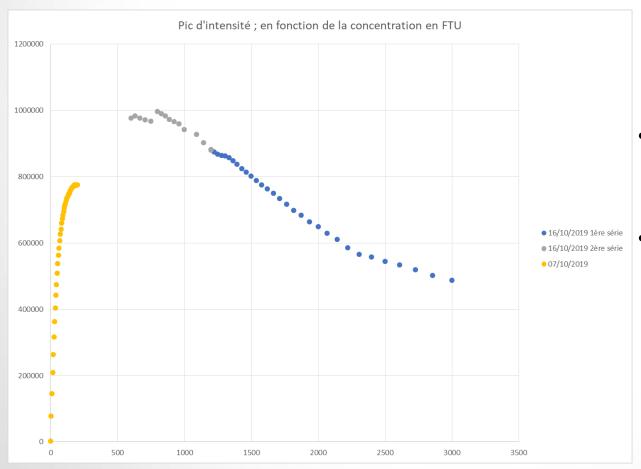
- Mesures statistiques : chaque courbe d'intensité est le résultat d'un grand nombre de mesures de temps de vol
- Une courbe enregistrée pour une concentration de formazine donnée
- Analyse et interprétation de différents paramètres pour chaque courbe

Analyse des mesures

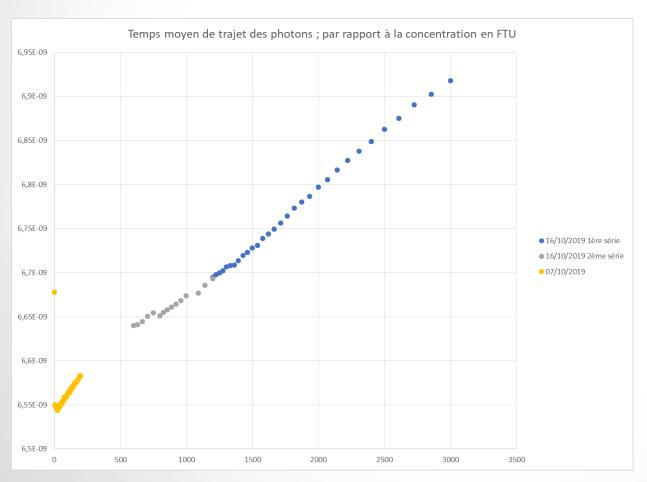


Tests de différents paramètres:

- Plus de 11 critères, présentation parmi les plus significatifs:
 - Photon rate: Nombre de photons total divisé par le temps d'acquisition
 - Intensity peak : Intensité du pic mesuré
 - Mean travel time: Moyenne temporelle pondérée par le nombre de photons


Nombre de photons

- Nombre de photons total détectés (toutes les mesures durent 10s, ces courbes sont donc équivalentes)
- Le nombre de photons augmente jusqu'à une certaine valeur de concentration puis diminue


Intensité du pic

- Intensité maximale mesurée, en nombre de photons
- L'intensité du pic augmente elle aussi jusqu'à une certaine valeur de concentration puis diminue

ICUSE

Temps de parcours moyen

- Moyenne temporelle pondérée par le nombre de photons
- Devrait être invariant de l'intensité d'après le modèle physique
- Augmentation du temps moyen en fonction de la concentration
- Légers décrochages

Perspectives

Projet porteur:

- Ingénierie et métrologie environnementale
- Recherche inter, pluridisciplinaire et appliquée
- Plusieurs publications envisagées
- Tremplin pour une demande de financement maturation à la SATT

Merci de votre attention!